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Abstract

This essay proposes new possibilities for site specific architectural design production for 
additive manufacturing by investigating the potential of combining bottom-up emergent 
systems – namely cellular automata and simulations of physarum polycephalum - and 
top-down interactions. The implementation of semi-controllable data-glitches - as a de-
sign driver for new forms of ornamentation - is tested.

BACKGROUND

New possibilities of architectural production 
methods, namely additive- and robotic-fabrication, 
ask for new modes of architectural design develop-
ment. State of the art fabrication methods do not 
rely on human handwork anymore. Therefore, an 
integrated digital work flow - from design to manu-
facturing - enables new ways of designing: away from 
using the computer for manual drawing, towards 
architectural modeling with integrated semi-autono-
mous emergent systems like agent based modeling 
and new combinations of generative algorithms.

Those systems, more and more likely to be 
manufacture-able in bigger scales with additive 
manufacturing, have the potential to react on, one 
hand, site-specific (for example by using point cloud 
scans) - small and big-scale phenomena and, on the 
other hand, to develop new ornamental qualities.

While the use of parametric tools - widely fa-
vored in the industry of computational architecture 

- normally is a successive intentionally deformation 
of an input geometry, coding with its complex pos-
sibilities of internal data flow manipulations, allows 
for a more emergent bottom up approach of form 
development and - because of its non-linear infor-
mation flow - creates a potentially broader space for 
formal / spatial discovery and is therefore used for 
the following investigation.

The bellow described methods and interactions 
of cellular automata (CA), simulations of physarum 
polycephalum (PP) and glitch art, are programmed 
on the pixel-level - all having the pixel, as the 
smallest building block we have in current archi-
tectural design development and representation, in 
common. The three-dimensional equivalent of the 
pixel - the voxel - is the smallest physical entity for 
3D-printing and the smallest design scale we are 
used to work with and is therefore - algorithmically 
and scale-wise - prioritized in this work.

The project proposes a three-dimensional CA-
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cell in the two-dimensional lattice and its neighbors 
are iteratively checked for their cell state. Depend-
ing on the predefined rule set each cell will change 
its state in the next iteration of the code. In that 
classic example the rule set consists of four rules:  
under-population (a living cell with fewer than two 
living neighbors dies), over-population (a living cell 
with more than three living neighbors dies), repro-
duction (a dead cell with exactly three living neigh-
bors becomes alive) and transition to next genera-
tion (any living cell with two or three neighbors lives 
on to the next generation). Those simple rules are 
capable to generate a set of basic shapes and behav-
iors which are constantly interact with each other to 
self-organize the whole lattice. 

The mainly used rule for the here described  
studies could be specified as “majority-wins”-rule:  
either in two-dimensions or three dimensions a 
certain number of cells (pixels) and their 8 or 26 
neighbors gets randomly checked. Depending on 
the CA’s starting condition there is a certain amount 
of discrete colors (states). For each random check 
of a pixel and its neighborhood the number of pix-
els with the same color are counted. The majority 
color will be the color of the checked center-pixel in 
the next time-step. This rule creates discrete voids 
out of a noisy starting condition. 

Weights for x-, y- and z-position of the pixels, 
their distance to the CA-center or other spatial 
points of interest and / or time-step related weights, 
additionally steer the overall behavior of the CA 
and their resulting discrete voids, their spatial for-
mation, position and size.

PP growing algorithm, which consists of multiple 
image layers - to create a three-dimensional volume 
of a 3d-printable architectural artifact. The outcome 
is a collection of sections through the artifact in a 
CT-scanner-like manner which could be translated 
directly into g-code for 3d-printing - colors of the 
pixels could inform a multi-material three-dimen-
sional print.

During the emergence of the CA-PP patterns the 
designer is able to intervene in the recursive process 
by regulating the final output’s ornamental qualities 
by steering pixel-sort-relations of the different CA-
PP layers. The internal bottom-up / top-down loops 
of the PP and the CA, the top-down influence of a 
site-specific point cloud scan and the user interac-
tions result in a here called top-up / bottom-down 
design method - showing the potential for new 
digital design-to-production work flows.

To test the overall work flow, a minimal bivouac 
is considered, based on a site specific point cloud 
- taken in the Swiss Alps. The proposal negotiates 
spatial modes of enclosure, structure, nocturnal / 
diurnal skin behavior and ornament. As a starting 
condition, the CC-PP algorithm is informed by spe-
cial points of interest, specified in the point cloud 
(like desired ground- or tree-connections).

CELLULAR AUTOMATA

CA are computational models used in computer 
theory, biology and related scientific fields to study 
dynamic systems with local cell interactions - basic 
models for information transfer. CA differ in their 
dimensionality, in size and structure of their local 
cell neighborhood and are either discrete or contin-
uous in their time steps and cell states. 

One of the simplest – Conway’s Game of Life 
(named after John Horton Conway) – is a two 
dimensional, two cell state (black, white) and time 
discrete CA with a so-called Moore neighborhood. 
A Moore neighborhood consist of eight neighbor 
cells surrounding the cell they interact with. Each 

Figure 1 “majority-wins”-rule creating discrete voids
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If not stopped, the system tends to grow infinite-
ly and is likely to favor one color over the other.

The overall growth behavior of the CA can be 
steered by implementing rules, related to pixel-po-
sitions or - potentially - more physics-related rules, 
like mathematical equations for material-specific 
R-values of wall-pixels or structural optimization 
formulas.

The use of a CA with combined physics- and 
design-informed rules has the potential for a more 
holistic bottom up emergent growth of the archi-
tectural structure rather than the classic top down 
imposing of it. 

Global ”knowledge” of the cells are informed by 
agent-based vector math, namely stigmergic slime 
mold simulations (PP).

PHYSARUM POLYCEPHALUM

Another computational model partially related 
to the above described system of CA is the digital 
simulation of the behavior of physarum polyceph-
alum, a single cell slime mold with some - not yet 
fully researched - adaptational abilities, like solving 
shortest path problems or even memorizing infor-
mation about its environment.

Researchers like Jeff Jones and Andrew Ad-
amatzky from the University of the West of En-
gland are exploring the computational potential 
of those systems in their International Center for 

Unconventional Computation.
The simplest version of a computational model 

of PP is simulated by having individual agents with 
their local world-interactions (similar to the CA) 
on two maps (two- or three-dimensional): a “pher-
omone”-map and an agent-map (both mainly for 
visualization). For the here described investigations 
a simplified version of modeling the behavior of PP, 
described in the paper Characteristics of pattern for-
mation and evolution in approximations of physa-
rum transport networks (Jones, 2010), is used.

The earlier mentioned pheromone-map serves 
as the means for indirect information transfer 
between the agents. There is no direct interaction 
between those entities. 

The pheromone-map – here a metaphor taken 
from nature to describe a gray-scale value-map – 
consists of (in the beginning randomly assigned) 
pixels with color values between 0 (no pheromones) 
and 255 (many pheromones). Each pheromone-pix-
el transmits its pheromone-value (PV) partially to 
its neighbor pixels (similar to the majority rule of 
the CA) and generally reduces the PV for each time 
step.

Each agent has a position on the agent-map with 
a specific orientation (in the beginning those are as-
signed by random). The agent is then randomly (for 
the first step) moving on the agent-map, while sens-
ing the pheromone-map 10 pixel in front of it and 
45° to the left and right of it. For every time step each 
agent makes a pixel-step in the direction of the high-
est PV of the three previously checked pixels (L, M, 
R). At the same time the agents release a high PV on 

Figure 2: “majority-wins”-rule with different additional rules for x-, y- and 
center-distance-position of the pixels

Figure 3: agent-map and pheromone-map
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resolution here informs the final voxel-materials 
on a similar scale. The resolution could be much 
higher, with increasing computational power. The 
points of interest - like desired tree- or ground-con-
nections - are constantly releasing high PVs on the 
pheromone-map, while the CA is informed by the 
scan itself - the xyz-coordinates and the colors of the 
scanned points. Brownish pixels (tree bark) are trig-
gering the growth, while greenish pixels (ground) are 
ignored. Accordingly, the desired growth between 
different tree branches is encouraged.

Because of the nature of the PP and the pre-
defined points of interest, the PP creates some kind 
of main scaffolding, the CA is able to grow around 
it.

the previous position (on the pheromone-map). If a 
position on the agent-map is already occupied, the 
agent rotates 180°.

This indirect- and local-behavioral system finds 
shortest paths between high PVs, it tends to mini-
mize its overall occupied area.

The PP simulation with its tendency to shrink 
and the majority-rule-CA which grows infinitively 
are able to find some kind of equilibrium when 
combined. The PP - in itself a top-down-bottom-up 
loop - informs the CA rules: the CA growth is re-
strained by the position of the PP-paths. Additional-
ly, the CA writes on the pheromone map of the PP 
to reduce the shrinking behavior of the PP.

The pheromone map starts - as described earlier 
- with random distribution of PV. 

However, during the simulation the three-di-
mensional CA-PP algorithm is also informed by a 
point cloud scan with additional predefined points 
of interest.

SITE-SPECIFICITY

The three-dimensional point cloud scan gets 
horizontally sliced - like CT-scans - according to the 
desired voxel resolution of the CA-PP algorithm 
(here one voxel represents roughly 3mm). The scan 

Figure 4: agent sensing

Figure 6: point cloud section, CA with three discrete voids, pheromone-map 
and agent-map

Figure 5: point cloud sectioning, box represents final volume
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The last step of form generation - and the first 
step towards 3D-printing fabrication data - is to 
combine the site-specific point cloud scan, the 
pheromone-map, the agent-map of the PP and the 
CA-map, by allowing the user to steer a glitch pix-
el-sorting algorithm, which combines the maps in a 
semi-destructive / ornamental manner. 

 

GLITCH

Depending on where you have your eyes and 
ears while roaming through the internet and today’s 
pop cultural, there is a huge possibility that you once 
in a while come across one of those wired aestheti-
cized colorful, noisy and corrupted images, videos 
or sounds: all coming together under the established 
term “glitch art”. Either – as a more current example 
–  Kayne West’s 2008’s music video to Welcome to 
Heartbreak or – to show since when creative folks 
played with that kind of notion – art like Nam June 
Paik’s 1965’s Magnet TV.

A glitch is mainly an (intentionally produced) 
malfunction of a (computer) system. Some people 
– conscious or not - feel attracted by those failures, 
either for aesthetic reasons or (more on a meta-lev-
el) because of the possibility to get a brief glimpse 
behind the scenes: the glitch reveals something 
about the shown which otherwise would be hidden. 
A corrupted sound file for example distracts us on 
one hand from the information (the music) but on 
the other hand tells us something about the struc-
ture behind the sound: how is the data stored, how 
is it processed, etc. 

The glitch will not tell us exactly how things work 
but it reminds us that there is not just the polished 
surface – which industry and advertising wants us to 
see. 

In that sense, a glitch gives us back some power 
and autonomy about our (nowadays very often dig-
itized) environment. Some people like Nick Briz 
(THOUGHTS ON GLITCH[ART]v2.0, 2015) 
and Rosa Menkman (The glitch momnet(um), 2011) 

even translating and mixing the concepts of glitch 
with topics like life style and politics.

The “looking behind the scenes”-idea taken 
a step further is seeing the glitch as some kind of 
counter movement to today’s fast, superficial, and 
polished (fake) social media world. Accordingly, 
it’s maybe close to an old Japanese concept, called 
wabi-sabi – a concept of perceiving beauty in old, 
unfinished, or even broken elements. One can see 
parallels in that idea in the digital noise of the glitch, 
although its matter is made from bits and bytes.

The mold-free use of digital fabrication - here 
additive manufacturing - enables the designer to for-
mally express what otherwise would be uneconom-
ically. Time- and material-wise a 3D-printer makes 
almost no difference between a printed ornament 
or a cube. While handmade or conventionally pro-
duced materials are capable of telling stories about 
their development or treatment - like brick-forms 
and -textures informed by the materials position in 
the oven during the firing process - new generations 
of 3D-printers with increasingly high resolution are 
on the way of loosing this kind of meta-information 
about process. 

As mentioned earlier the glitch is capable of re-
vealing bits about the process of making or the un-
derlying information. By implementing it in the de-
sign process or even possibly in the manufacturing 
process it is arguable that the intended form-corrup-
tion can be part of a new ornamental language, which 
lies on the other side of the shiny-white-endless-sur-
face digital architecture spectrum. Additionally, the 
glitch here - partially because of abrupt changes be-
tween different layers - reveals how the architecture 
was designed and produced in horizontal steps - and 
therefore is able to transfer something of the process 
in the physical manifestation.

The glitch art community distinguishes between 
two types of glitches: the wild (the found “real” glitch) 
and the domesticated.

Jeff Donaldson and Antonio Roberts founded 
glitch safari, an online community for wild-glitch 
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archiving, in 2012. The homepage shows endless 
collections of broken TVs, LED screens and other 
primarily public media / information devices.

Wild glitches - at least in the beginning of the 
“movement” - were basis for the reproduction of do-
mesticated glitches. The main characteristics found 
in both, are unnatural colors, general noise, linearity 
and compression artifacts. Each of those aspects are 
attributable to the underlying technology: the way 
digital colors are defined, media is compressed and 
decompressed or pixels are stored.

Domesticated glitches are often either created 
by reproducing the error which generated the wild 
equivalent in the first place (for example wrong 
compression or file treatment) or by generally and 
more freely collaging images with pixel-algorithms 
to archive similar visual qualities and aesthetics. 

After some initial tests with corrupting data-types 
and file formats the use of algorithmic approach-
es - which are mainly based on defined rules for 
pixel-sorting images, rules similar to those pro-
grammed in cellular automata - were identified as 
the most productive for the here described explora-
tion.

Both methods - glitching and CA - have a lot in 
common, but they are coming from different back-
grounds: one more scientific while the other one is 
more pop-cultural.  

INITIAL EXPERIMENTS

First experimentations were based on “classical” 
methods like data-moshing, bit-shifting and tests 
with wild glitches. Data-moshing for example is 
the changing of file extensions and the discovery 
of those files’ behaviors when opened or treated in 
programs not made for them. Bit-shifting (although 
just loosely connected to the glitch-scene) is a com-
putational method were bits directly are manipulat-
ed to change – for example – the order of pixels in 
an image. Other techniques which were tested are 
related to scanning-methods, hexadecimal number 

manipulations, pixel-list shifting and finally CA-re-
lated pixel-sorting experiments. Depending on the 
glitching technique visual results are either subtle or 
drastically.

The first test which was investigated, was scan-
ning images with an overhead scanner. By rapidly 
moving the images while scanning them, one is 
able to get distorted “wrongly” colored versions of 
the initial picture, a first glimpse into the aesthetic 
qualities found in glitch art in general. Next to the 
change of the overall form, the originally black and 
white images obtain additional colorful schlieren 
around the dark areas of the picture. Assuming-
ly, the different color channels of the scanner are 
working slightly offset in time, by that creating this 
kind of overlay. Even though produced intentional-
ly, this kind of glitches are more likely to fall in the 
category of wild glitches. They show interesting and 
partially steerable deformations but are hard to au-
tomate algorithmically and therefore are not further 
considered for the overall process.

Following tests were made to discover the poten-
tial of hexadecimal systems for glitching and low-lev-

Figure 7: “wild” glitch made with overhead scanner
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el data manipulation - even though not used very 
often in the glitching community. The here shown 
example translates strings (text) in hexadecimal 
code and finally into color.

Each letter of the text - here randomly copy-past-
ed - is converted into a two-digit combination of 
letters and numbers. Three of those two-digit 
combinations are then used to create a color value 
(which in hexadecimal code is made out of 6-digits). 
Each color is then represented in a colored pixel, 
which are subsequently ordered in a row and finally 
in columns. For example:

- string: “halloo”
- hex: 48 61 6c 6c 6f 6f
- color pixel 1: #48616c
- color pixel 2: #6c6f6f

The resulting image is basically some kind of 
data-visualization and quickly asks critically for a 
useful implementation in the proposed work flow.

Additionally made tests - mainly for the purpose 
of further discovery of the overall aesthetic-language 
of glitches - were related to data-moshing (heavily 
used in the community): opening files - for manip-
ulation - in programs not intended to work with 
them. In this case an image (jpeg) opened in a text 
editor and saved again as a picture. This process 
could be automated but shows drastic change in the 
image’s appearance, which could end up in unus-
able changed images,  instead of using the glitch as a 
more subtle ornamental layer for the overall design 
process.

An experiment made with binary-shifting - equal-
ly loose related to glitch as the hexadecimal oper-
ations, more related to general computation - is 
building up on the idea of manipulating data at a 
low level: numbers stored as binary numbers - for 
example 7 = 0111 (8,4,2,1) - allow to be manipu-
lated with so called bitwise operations. The binary 
number 0111 shifted to the left (<<) becomes 1110, 
to the right (>>) it becomes 0011. The, in a for-loop 
(iteratively) shifted values, were used for color, size 
and position of points in a tow-dimensional im-
age. The operations did not show any unexpected 
glitches, the result is mainly an exponential number 
addition or subtraction of the starting number. 

A method, here called list-shifting, slowly enters 
the territory of the pixel. Pixels are generally stored 
in one-dimensional lists - instead of a two-dimen-
sional, what one would might assume. If represent-

Figure 8: string to hexadecimal to color

Figure 9: data-moshing an image

Figure 10: binary bit-shifting experiments
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ing an image with 120,000 pixels, with an initial 
width of 300 pixel and a height of 400 pixel, in an 
image with 400 x 300 pixel, one will get results like 
the image bellow. 

The following described methods are algorithmi-
cally similar to the ones used for CA and are slowly 
conceptually bleeding into this field. Forms either 
emerge from local pixel-interactions or are defined 
through top-down pixel-movement rules.

Figure 11: pixel-list-shifting

The following explained model is a recursive 
loop, with a bottom-up analysis - in a CA style 
manner - and a top-down pixel-manipulation. Ran-
domly checked pixels get compared to their eight 
neighbor pixels. The eight pixels are added together 
and divided by eight. If this averaged color-value 
is far away from the center’s color-value, an edge 
in the image is recognized. This edge recognition 
triggers top-down pixel-offsets, color changes or line 
drawings. The recursive algorithm generates useful 
- for the here investigated work flow - and partially 
controllable pattern.

The last method, which finally is being used in 
the overall work flow, is an adaptation of the pre-
viously described pixel-sorting algorithm. Instead 
of sensing local neighborhoods in a two-dimen-
sional image, the rule set is based on differences in 
three-dimensionality. Pixels are randomly checked 
and compared with the pixels bellow and above 
them - in an image stack. In this case the pixels get-
ting sort by color in the z-direction: colorful pixels 
are “floating” to the top of the image stack, dull pix-
els are “sinking” to the bottom. This method is used 
in the final model, except its comparing the pixels 
of different stacks with each other - from “parallel” 
boxes (pheromone maps, agent-maps and CA-maps 
are compared for each layer in z-direction).

Figure 12: pixel-sorting Figure 13: z-sorting



9

Project related, the right ratio of destruction and 
emergence of interesting patterns are found it this 
method.

The notion of pixel-sorting algorithms corre-
sponds to the manipulation of the image’s smallest 
building block (the pixel) and the printers smallest 
printing resolution (the voxel). By inventing rules in-
formed by pixel color, -location and -neighborhood, 
it is possible to change the structure of the overall 
layer, which finally reveals process in the overall 
artifact. 

The intervention of a site-specific layer-based 
combination of CA, PP and pixel-sorting glitch 
algorithms, gives possibilities for new ways of design 
production for additive manufacturing, in a top-
down / bottom-up manner.

FINAL MODEL

The top-down approach in architectural 
practice is a common method used for design 
development. Overall design ideas are imposed in a 
top-down manner guided by the will of the architect 
in charge. Projects are iteratively formulated 
through manually alternating between hand-
sketching and computer-aided-design drawings. 
On one hand the benefits of those work flows 
is the (supposedly) full control over the project. 
On the other hand, it is a very time consuming 
process with no possibilities for the emergence or 
discovery of unintended spatial or formal qualities. 

The other approach, less seen in architectural 
practice but surely rising in architectural education, 
is the development of architectural form using 
bottom-up systems. Those emergent systems – or 
the way they are used – are often criticized for their 
inability to cope with context and design intention. 
Very often those systems are used in pre-architec-
tural designs in academia - mainly as uncontextual 
experiments. 

Both systems have their strengths and weakness-
es, but have a real potential when combined and 
used in a single recursive process.

The proposed recursive process combines a 
list-based and pixel-represented three-dimensional 
CA-like emergent system with a user interface for 
intervening, namely pixel-sorting - enhancing the 
emergence of the overall system, as a design layer 
for revealing information about the design- and the 
production-process.

Instead of using a completely visualized tree 
dimensional voxel representation for the process, a 
list-based system is introduced, to minimize calcu-
lation and iteration time. Each layer in z-direction 
(pixel-height) gets a list containing all pixel color val-
ues – for x and y-direction - as numbers. Only the 
current operation layer is rendered on the screen - 
different layers of the CA-PP algorithm are choose-
able. The z-layers are stepwise iteratively loaded, 
manipulated and updated again.

The glitches are introduced before finally saving 
the frames. Different combinations of pixel-sort-
ing between the different layers (pheromone-map, 
agent-map, and cellular automata map) can be 
steered through user interaction: pressing different 
keys while the algorithm is running, allows for the 
change of the layer-weights. 

Figure 14: general data-flow
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The final output of the combination of the differ-
ent layers will be the basis for the 3d-printing g-code 
development. The glitching allows for additional 
information for a multi-material print. The different 
layers influence each other on a formal-basis - by 
pixel-movement - and  on a color-basis - by creating 
RGB-values from the layers.

The formal glitching is related to the desire to 
show the production- and design-process, while the 
color-glitching is used to inform color and materi-
al-properties - like rigidity and translucency - of the 
final artifact. The translucency changes - as men-
tioned earlier - the diurnal and nocturnal appear-
ance of the final bivouac.

Figure 16: image-stack

The images for the pixel-sorting process are 
taken from the final four stacks of images: site-map, 
PP-map, agent-map and CA-map.

The PP-pixel define the more rigid areas of the 
shelter, the CA the softer. The glitching informs 
surface-finish and color / translucency.

Figure 15: overall information-flow
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ORNAMENTAL GLITCHING

The final layers - later used for g-code generation 
- are divided in two different outputs: one informs 
the material properties (rigidity) and the other the 
color and translucency of the final 3D-print.

The outside edges of the CA-voids are used, in 
the first step, to inform the soft-material ornaments 
of the bivouac (gray color, Fig. 17). The pheromone 
map pixel-values are affecting the offset, the user 
the direction, of the hair-like skin. On the outside, 
those soft-material arms, functioning in a roof-like 
manner. The overlap is providing minimal rain pro-
tection. Inside, those arms provide nest-like mate-
rial for sleeping-areas. The harsh spikes seen in the 
material-map are repositioning themselves, due to 
gravity, when produced.

The hard-material (black) areas of the materi-
al-map are informed by the agent-map of the PP: 
the fine dots from the agent-map are used in an 
additional growing algorithm - to grow bigger in size. 
The time of the growth is informed by the phero-
mone-map. The dark areas in the material-map are 
“floating” in 2D but are connected in the 3D-stuc-
ture.

White represents unprinted areas.

The different skin-properties (overlap of soft-ma-
terial) potentially generate different micro-climates 
in the overall structure.

The color-layers are produced by additional 
color glitching, which could be more subtle - i.e. 
for camouflage for the proposed bivouac - but are 
here shown in an intensive manner. The gray -and 
black-material-pixels of the material-map get col-
ored by combining the information of all four maps 
(pheromone, CA, agents and site) and an additional 
color-map. The RGB-values of the pixels are later 
used for defining different translucency-values for 
each voxel. Accordingly, the bivouac has different 
intensities of internal brightness. Additionally, the 
voxel-translucencies create different appearances of 
the overall structure in day- and nighttime. At night 

the structure “glows” when illuminated from the 
inside, at day the inside gets illuminated by natural 
light from the outside.

Figure 17: material-map

Figure 18: cleaned color-map
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The general assembly-logic follows the glitch-
ing-theme of the production process, therefore the 
here proposed tectonic system must be seen as 
a first step of an experimental setup, instead of a 
finished construction idea.

The overall structure is vertically divided (in the 
same direction as the printing layers) in multiply 
parts. The part sizes are dependent on the minimal 
amount of layers needed for each element to be 
stable for itself. 

The parts are threaded on steel wires, embracing 
the trees who initialized the whole design process 
in the first place, and then brought into position 
(for example with some kind of wooden scaffold). 
When the elements are in position the wires get 
tensioned and locked at their ends. It’s expected 
and desired that, after removing the scaffolding, the 
parts will slip partially away from their perfect fit. 
This will create an additional, for the inside, spatial- 
and, for the outside, more formal-glitch.

CONCLUSION

The here proposed design-to-production work 
flow shows first steps into a new world of de-
sign-methods, useful for future production process-

Figure 19: glitch assembly-logic around tree.
left: isometric-, right: top- and side-view. 

es like additive-manufacturing. The formal outcome 
is quite experimental and includes the personal 
desire to implement glitching, as an speculative 
ornamental driver.

The here used site-specific CA and PP show, 
that they, when used in combination, are capable of 
informing spatial and structural aspects of architec-
ture in general.

The idea of a voxel-based design space allow 
for much higher degree of material-difference in 
the overall structure or artifact and the list-based 
approach of those voxel-interaction calculations 
make it computationally possible - even on personal 
computers. Nevertheless, the desired user-interac-
tion starts to make more sense with higher compu-
tational power.

The overall data-flow shows ways of combining 
top-down and bottom-up design methods.

The proposed design work flow could be used - 
more specifically in terms of spatial and behavioral 
qualities - for the briefly mentioned forest-bivouac, 
if modified to match personal available computa-
tional resources.   
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